
CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 9: Web Security
Co-Instructor: Nikos Triandopoulos

February 25, 2025

https://brown-csci1660.github.io

https://brown-csci1660.github.io/

CS1660: Announcements

u Course updates

u Project 2 is going out today

u Homework 1 is due soon (Thu, Feb 27)

u Where we are

u Part I: Crypto
u Part II: Web
u Part III: OS
u Part IV: Network
u Part V: Extras

2

Today

u Web security

u Web Security Models

u Browser Security

u Web Technologies and Protocols

3

Crypto recap through
Discrepancies…

Discrepancies

u Security Vs. cryptography

u Guarantees Vs. threat model

u Confidentiality Vs. integrity

u Prevention Vs. detection

u Old Vs. modern cryptography

u Perfect Vs. computational security

u Modelled Vs. practical attacker

u Crypto Vs. non-crypto security

u Truly Vs. pseudo random

u Secret Vs. public

u Theory Vs. practice

u Ideal model Vs. implementation

u Open Vs. closed design

u Symmetric Vs. asymmetric crypto

u Block Vs. all-length designs

u Data Vs. user authentication

u Set-up Vs. real-world assumptions

u Good hygiene Vs. arbitrary practices

u Random Vs. non-random

5

The Dyn DDoS attack

6

It’s unfair! – I had no class but couldn’t watch my Netflix series!

On October 21, 2016, a large-scale cyber was launched

u it affected globally the entire Internet but particularly hit U.S. east coast

u during most of the day, no one could access a long list of major Internet
platforms and services, e.g., Netflix, CNN, Airbnb, PayPal, Zillow, …

u this was a Distributed Denial-of-Service (DDoS) attack

7

Domain Name Service (DNS) protocol

Resolving domain names to IP addresses

u when you type a URL in your Web browser, its IP address must be found
u larger websites have multiple IP responses for redundancy to distributing load

u at the heart of Internet addressing is a protocol called DNS
u a database translating Internet names to addresses

8

answer: IP is 52.22.118.132

query: Please resolve netflix.com

DNS: Hierarchical search
Search is performed recursively and hierarchically across different type of DNS resolvers
u Untrusted recursive DNS servers: query other resolvers and cache recent results
u Trusted TLD (top-level domain) servers: control TLD zones such as .com, .org, .net, etc.

9

52.22.118.132
(or “non-existent”)

netflix.com

primary secondary

DNS entries:
<netflix.com, 52.22.118.132>

subset of cached queried entries
(or information of other resolvers)

locally cached IP addresses
(at Web browser and OS)

DNS: A critical asset to attack…

What main security properties must be preserved in such an important service?

u all properties in CIA triad are relevant!

u resolving domain names to IP addresses is a service that

u must critically be available during all times – availability

u must critically be trustworthy – integrity

u must also protect database entries that are not queried – confidentiality

10

DNS: A critical asset to attack… (cont.)

11

…

source

DB

server

DB’

answer

query
user

malicioussigned
digest

verification+
proof

“is answer correct?”

+ signed digest

integrity availability / confidentiality

Dyn DDoS attack

12

aWa2j3netflix.com
is a non-existent domain

Please resolve aWa2j3netflix.com

I don’t know about
aWa2j3netflix.com; do you?

No

Attack:

u from a compromised machine ask for domain names that do not exist

u query is forwarded to fewer primary Dyn servers, i.e., defeating benefits of distribution

u use a botnet to ask A LOT of such queries to bring down the Dyn DNS service!

Dyn DDoS attack: Exploit Internet of Things (IoT)

13

aWa2j3netflix.com
is a non-existent domain

Please resolve aWa2j3netflix.com

I don’t know about
aWa2j3netflix.com; do you?

No

Create a botnet:

u compromise easy targets: IoT “thin” devices, e.g., printers, cameras, home routers, …

u how? find a vulnerability on these devices...

u all such devices used an OS with a static, hard-wired, thus known, admin password...!

DNSSEC & NSEC

Security extensions of DNS protocol to protect integrity of DNS data

u correct resolution, origin authentication, authenticated denial of existence

u specifications made by Internet Engineering Task Force (IETF) via RFCs

u an RFC (request for comments) is a suggested solution under peer review

u challenges: backward-compatible, simplicity, confidentiality, who signs

u DNSSEC/NSEC: extension that provide proofs of existence/denial of existence

14

…

DNSSEC & NSEC: core idea

15

source

DB

server

DB’

answer

query
user

verification+
proof

“is answer correct?”

+ signed digest

DNSSEC protocol: each DNS entry is pre-signed by primary name server

NSEC protocol:
• domain names are lexicographically ordered and then each pair of neighboring

existing domain names is pre-signed by the primary name server
• non-existing names, e.g., aWa2j3netflix.com are proved by providing this pair

“containing” missed query name, e.g., <awa.com, awb.com>

signed
digest

DNSSEC: example

16

Each entry <domain name, IP address> in the database is individually signed by a primary
DNS server and uploaded to secondary DNS servers in signed form

e.com resolves to IPe.com

please resolve e.com

proof: σe , pe = <e.com,IPe.com> Zone names
a.com, IPa.com

c.com, IPc.com
e.com, IPe.com
z.com, IPz.com

Zone names
a.com, IPa.com
c.com, IPc.com
e.com, IPe.com
z.com, IPz.com

signing key

verification

verify signature
using known

public key

NSEC: example

17

Additionally, pairs of consecutive (in alphabetical order) domain names are individually
signed by a primary DNS server and uploaded to secondary DNS servers in signed form

domain name b.com doesn’t exist

please resolve b.com

proof: σ1 , p1 = <a.com, c.com> Zone names
a.com
c.com
e.com
z.com
a.com

σ1

σ2

σ3
σ4

signing key

verification

verify signature
using known

public key
& check “miss”

NSEC: Vulnerability

18

Proofs of non-existing names leak information about other unknown domain names

domain name b.com doesn’t exist

please resolve b.com

proof: σ1 , p1 = <a.com, c.com> Zone names
a.com
c.com
e.com
z.com
a.com

σ1

σ2

σ3
σ4

signing key

verification

verify signature
using known

public key
& check “miss”

leaked information

user asked for b.com but
also learned for a.com & c.com

exploit the “leak-domain-names”
vulnerability of NSEC to learn the
domain names of an entire zone

Zone enumeration attack

19

An attacker can simply act as a “querier” to learn target organization’s network structure!

resolve b$.com, d#.com, e%.com

Zone names
a.com
c.com
e.com
z.com
a.com

σ1

σ2

σ3
σ4

signing key

ask for non-existing names
to get all possible proofs

none exists
proof: σ1 , p1 = <a.com, c.com>
proof: σ2 , p2 = <c.com, e.com>

proof: σ3 , p3 = <e.com, z.com>

Zone names
a.com
c.com
e.com
z.com
a.com

This attack may expose private device names (e.g., IoT devices
that can be toehold for other attacks!) or reveal other private

DNS data that many registries have legal obligations to protect

NSEC3: NSEC in the hash domain

b.com is a non-existent domain

please resolve b.com

proof: σ3 , p3 = <dde45,zrit5>
Zone names
a.com
c.com
e.com
z.com

asked for b.com but
learned h(e.com) & h(z.com)

a1bb5
23ced
zrit5
dde45

23ced
a1bb5
dde45
zrit5
23ced

h(b.com) = ntwo4
e.g., h is SHA-256

hash h sort
σ1

σ2

σ3

σ4

NSEC5: A secure solution

b.com is a non-existent domain

please resolve b.com

proof: σ3 , p3 = <dde45,zrit5>
Zone names
a.com
c.com
e.com
z.com

h’(b.com) = ntwo4

a1bb5
23ced
zrit5
dde45

hash h’
23ced
a1bb5
dde45
zrit5
23ced

sort
σ1

σ2

σ3

σ4

h’(x) = h(RSA-Sign(, f(x)))

asked for b.com but
learned h’(e.com) & h’(z.com)

h: as in NSEC3
f: “message transformation” hash

h’(x), RSA-signature of f(b.com)

Web security model

Web applications

23

Web
Server

Browser
responses

requests

What are the dangers?

NetworkClient

Server

Threat models

24

Browser
responses

requests

Compromised client,
or malware

Network
attacker

Web attacker

The main vector of attack is via
the content of a website

DoS attacks,
or malware

Web
Server

Network attacks

25

Source Receiver
Standard Flow Block (DoS)

Source Receiver

Wiretapping (sniffing)

Source Receiver

Attacker in the Middle (active)

Source Receiver

Creation (spoofing)

Source Receiver

Receiver

Attacker in the Middle (passive)

Source

Web Attacker Capabilities

u Attacker controls a malicious website

u website might look professional, legitimate, etc.

u attacker can get users to visit website (how?)

u A benign website is compromised by attacker

u attacker inserts malicious content into website

u attacker steals sensitive data from website

u Attacker does not have direct access to user's machine

26

Potential Damage

u An attacker gets you to visit a malicious website…

u Can they perform actions on other websites impersonating you?

u Can they run evil code on your OS?

u Ideally, none of these exploits are possible ...

27

Attack Vectors

u Web browser (focus of this lecture)

u Renders web content (HTML pages, scripts)

u Responsible for confining web content

u Note: Browser implementations dictate what websites can do

u Web applications

u Server code (PHP, Ruby, Python, …)

u Client-side code (JavaScript)

u Many potential bugs (e.g., see Project 2)

28

Browser Security: Sandbox

Goal: protect local computer from web attacker

u Safely execute code on a website, without the code

u accessing your files, tampering with your network, or accessing other sites

High stakes

u $40K bounty for Google Chrome

u www.google.com/about/appsecurity/chrome-rewards/

We won't address attacks that break the sandbox

u But they happen check the CVE list

u https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=sandbox

u https://support.apple.com/en-us/HT213635

29

https://chromereleases.googleblog.com/2022/02/stable-channel-update-for-desktop_14.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0609
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=sandbox
https://support.apple.com/en-us/HT213635

Domains, HTML, HTTP

URL and FQDN

URL: Uniform Resource Locator

https://cs.brown.edu/about/contacts.html

u a protocol

u e.g. https

u a FQDN

u e.g. cs.brown.edu

u a path and file name

u e.g. /about/contacts.html

FQDN: Fully Qualified Domain Name

[Host name].[Domain].[TLD].[Root]
u Two or more labels, separated by dots

u e.g., cs.brown.edu

u Root name server
u a “.” at the end of the FQDN

u Top-level domain (TLD)
u generic (gTLD): .com, .org, .net,
u country-code (ccTLD): .ca, .it, , .gr …

31

Domain hierarchy

32

Root (.)

A brown.edu 128.148.128.180
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###

A cs.brown.edu 128.148.32.110
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###

A google.com 66.249.91.104
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########

google.com

resource records

...

... ...

A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########

A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########

Amicrosoft.com 207.46.232.182
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########

A stanford.edu 171.67.216.18
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###

microsoft.com

com edu

brown.edu

cs.brown.edu

stanford.edu

HTML

Hypertext markup language (HTML)

u allows linking to other pages (href)

u supports embedding of images,
scripts, other pages (script, iframe)

u user input accepted in forms

33

<html>
 <head>
 <title>Google</title>
 </head>
 <body>
 <p>Welcome to my page.</p>
 <script>alert(“Hello world”);
 </script>
 <iframe src=“http://example.com”>
 </iframe
 </body>
</html>

HTTP (Hypertext Transport Protocol)
Communication protocol between client and server

34

Web
Server

Browser

Client Server

GET /search?q=cs166&num=02 HTTP/1.1
Host: www.google.com

HTTP/1.1 200 OK
Server: Apache/2.2.3 (CentOS) …
Content-Type: text/html
<html>
 <head>
 <title>Google</title>
 </head>
 <body>…</body>
</html>

What’s in a request (or response)?

35

GET /search?q=cs166&num=02 HTTP/1.1
Host: www.google.com

HTTP/1.1 200 OK
Server: Apache/2.2.3 (CentOS) …
Content-Type: text/html
<html>
 <head>
 <title>Google</title>
 </head>
 <body>…</body>
</html>

Variables (name-value pairs)URL (domain, path)

Resource

Metadata
header

RESPONSE
REQUEST

Web
Server

Browser

Variables

Key-value pairs obtained from user input into forms & submitted to server

u Submit variables in HTTP via GET or POST

u GET request: variables within HTTP URL

u e.g., http://www.google.com/search?q=cs166&num=02

u POST request: variables within HTTP body

u POST / HTTP/1.1

u Host: example.com

u Content-Type: application/x-www-form-urlencoded

u Content-Length: 18

u month=5&year=2024

36

Semantics: GET Vs. POST

GET

u Request target resource
u Read-only method
u Submitted variables may specify

target resource and/or its format

POST

u Request processing of target resource
u Read/write/create method
u Submitted variables may specify how

resource is processed
u e.g., content of resource to be

created, updated, or executed

37

GET Vs. POST

38

GET POST
Browser history ✓ X

Browser bookmarking ✓ X
Browser caching ✓ X

Server logs ✓ X
Reloading page immediate warning
Variable values Restricted arbitrary

Web-application security

Client-side controls

u Web security problems arises because clients can submit arbitrary input

u What about using client-side controls to check the input?

u Which kind of controls?

40

Client-side controls (cont.)

A standard application may rely on client-side controls

u They restrict user input in two general ways

u Transmitting data via the client component using a mechanism that should
prevent the user from modifying that data

u Implementing measures on the client side

u In this threat model

u Server does not trust the Client

41

Bypassing client-side controls

u In general, a security flaw because it is easy to bypass

u The user

u has a full control over the client and the data it submits

u can bypass any controls that are client-side and not replicated on the server

u Why these controls are still useful?

u For load balancing or usability

u Often we can suppose that the vast majority of users are honest

42

Transmitting data via the client

u A common developer bad habit is passing data to the client in a form that the
end user cannot directly see or modify

u Why is it so common?
u It removes or reduces the amount of data to store server side per-session

u In multi-server applications, it removes the need to synchronize the session data
among different servers

u The use of third-party components on the server may be difficult or impossible to
integrate

u Transmitting data via the client is often the easy solution
u But unfortunately it is not secure

43

Common mechanisms

u HTML Hidden fields

u A field flagged hidden is not displayed on-screen

u HTTP Cookies

u Not displayed on-screen, and the user cannot modify directly

u Referrer Header

u An optional field in the http request that it indicates the URL of the page from
which the current request originated

u If you use the proper tool you can tamper the data on the client-side

44

Web client tool

u Web inspection tool:

u Firefox or Chrome web developer:

u powerful tools that allow you to edit HTML, CSS and view the coding behind any
website: CSS, HTML, DOM and JavaScript

u Web Proxy:

u Burp, OWASP ZAP, etc.

u Allow to modify GET or POST requests

45

HTTP proxy

An intercepting Proxy:

u inspect and modify traffic between your browser and the target application

u Burp Intruder, OWASP ZAP, etc.

46

Browser security

In BROWSER we trust…

u Most of our trust on web security relies on information stored in the Browser

u a Browser should be updated since Bugs in the browser implementation can lead to
various attacks

u e.g., https://us-cert.cisa.gov/ncas/current-activity/2023/02/14/mozilla-releases-
security-updates-firefox-110-and-firefox-esr

u Add-ons too are dangerous

u Hacking Team flash exploits - goo.gl/syVwiD

u github.com/greatsuspender/thegreatsuspender/issues/1263

u Executing a browser with low privileges helps

48

Browser Security: Same-Origin Policy (SOP)

Very simple idea: “Content from different origins should be isolated”

u Website origin defined over tuple (protocol, domain, port)

Very difficult to execute in practice…

u Messy number of cases to worry about…

HTML elements, Navigating Links, Browser cookies, JavaScript capabilities, iframes, …
etc.

u Browsers didn’t always get this correct…

49

Browser Security: Same-Origin Policy (SPO) (cont.)

Goal: Protect and isolate web content from other web content

u Content from different origins should be isolated, e.g., mal.com should not
interact with bank.com in unexpected ways

u What about cs.brown.edu vs brown.edu or mail.google.com vs
drive.google.com?

u Lots of subtleties

50

SOP example: http://store.company.com/dir/page.html

51

(protocol, domain, port)

